Mathematical Analysis III Mid-Test

Mathematical Analysis III Mid-Test of Nankai University (Boling Version)

Posted by Sherr1 on November 12, 2024

Introduction

This is the Midterm Exam of Mathematical Analysis III(Boling Class) at Nankai University in the autumn semester of 2024-2025.

On the whole, the difficulty level of this test is between that of last year and the year before.

Problems and Solutions

Exercise 1

研究下列级数的收敛性

\[(1)\quad\displaystyle\sum_{n=1}^{+\infty}\frac{\sin(n+\frac{1}{n})}{\sqrt{n}}\] \[(2)\quad\displaystyle\sum_{n=1}^{+\infty}\Big(\big(1+\frac{1}{n+1}\big)^{2n}-\big(1+\frac{2}{n+a}\big)^{n}\Big)\]
Solution 1-(1)-1

已知$\displaystyle\sum_{n=1}^{+\infty}\frac{\sin n}{\sqrt{n}}$ 收敛,考虑:

\[\displaystyle\sum_{n=1}^{+\infty}\frac{\sin(n+\frac{1}{n^2})}{\sqrt{n}}-\sum_{n=1}^{+\infty}\frac{\sin n}{\sqrt{n}}=\sum_{n=1}^{+\infty}\frac{\sin(n+\frac{1}{n^2})-\sin n}{\sqrt{n}}=\sum_{n=1}^{+\infty}\frac{\cos\theta_n}{n^2\sqrt{n}}\]

\[\sum_{n=1}^{+\infty}\left|\frac{\cos\theta_n}{n^2\sqrt{n}}\right|\leq\sum_{n=1}^{+\infty}\frac{1}{n^2\sqrt{n}}\]

而$\displaystyle\sum_{n=1}^{+\infty}\frac{1}{n^2\sqrt{n}}$收敛,故 \(\displaystyle\sum_{n=1}^{+\infty}\left|\frac{\cos\theta_n}{n^2\sqrt{n}}\right|\) 收敛,故$\displaystyle\sum_{n=1}^{+\infty}\frac{\cos\theta_n}{n^2\sqrt{n}}$收敛,即有$\displaystyle\sum_{n=1}^{+\infty}\frac{\sin(n+\frac{1}{n^2})}{\sqrt{n}}$收敛.

Solution 1-(1)-2

\(\displaystyle\sum_{n=1}^{+\infty}\frac{\sin(n+\frac{1}{n^2})}{\sqrt{n}}=\sum_{n=1}^{+\infty}\frac{\sin n\cos\frac{1}{n^2}}{\sqrt{n}}+\sum_{n=1}^{+\infty}\frac{\cos n\sin\frac{1}{n^2}}{\sqrt{n}}\)

由于$\displaystyle\sum_{n=1}^{+\infty}\frac{\sin n}{\sqrt{n}}$收敛,$\displaystyle\cos\frac{1}{n^2}$单调有界,故由Abel判别法可知$\displaystyle\sum_{n=1}^{+\infty}\frac{\sin n\cos\frac{1}{n^2}}{\sqrt{n}}$收敛.

由于 \(\displaystyle\left|\frac{\cos n\sin\frac{1}{n^2}}{\sqrt{n}}\right|\leq\left|\frac{sin\frac{1}{n^2}}{\sqrt{n}}\right|\leq\frac{1}{n^2\sqrt{n}}\)且$\displaystyle\sum_{n=1}^{+\infty}\frac{1}{n^2\sqrt{n}}$收敛,故$\displaystyle\sum_{n=1}^{+\infty}\frac{\cos n\sin\frac{1}{n^2}}{\sqrt{n}}$收敛.

又由于 \(\displaystyle\sum_{n=1}^{+\infty}\frac{\sin(n+\frac{1}{n^2})}{\sqrt{n}}=\sum_{n=1}^{+\infty}\frac{\sin n\cos\frac{1}{n^2}}{\sqrt{n}}+\sum_{n=1}^{+\infty}\frac{\cos n\sin\frac{1}{n^2}}{\sqrt{n}}\)

故$\displaystyle\sum_{n=1}^{+\infty}\frac{\sin(n+\frac{1}{n^2})}{\sqrt{n}}$收敛.

Solution 1-(2)

\(\begin{aligned} &(1+\frac{1}{n+1})^{2n}-(1+\frac{2}{n+a})^n=e^{2n\ln\left(1+\frac{1}{n+1}\right)}-e^{\ln\left(1+\frac{2}{n+a}\right)}\\ =&e^{2n\left(\frac{1}{n+1}-\frac{1}{2(n+1)^2}+o(\frac{1}{n^2})\right)}-e^{n\left(\frac{2}{n+a}-\frac{4}{2(n+a)^2}+o(\frac{1}{n^2})\right)}\\ =&e^2{\left(e^{\frac{2n}{n+1}-2-\frac{n}{(n+1)^2}+o(\frac{1}{n})}-e^{\frac{2n}{n+a}-2-\frac{2n}{(n+a)^2}+o(\frac{1}{n})}\right)}\\ =&e^2\left(1-\frac{2}{n+1}-\frac{n}{(n+1)^2}+o(\frac{1}{n^2})-1+\frac{2a}{n+a}+\frac{2n}{(n+a)^2}+o(\frac{1}{n^2})\right)\\ =&e^2\left(\frac{2a(n+1)-2(n+a)}{(n+1)(n+a)}+\frac{2}{n}-\frac{1}{n}+o(\frac{1}{n})\right)=e^2\left(\frac{2a-2+1}{n}+o(\frac{1}{n})\right)\sim e^2\frac{2a-1}{n} \end{aligned}\) 由上式可知当且仅当$2a-1=0\Rightarrow a=\frac{1}{2}$时收敛,其余情况均发散.

Exercise 2

判断下列积分的收敛性

\[\iint_{x^2+y^2\geq1}\frac{\cos(x^2)}{x^2+y^2}dxdy\]
Solution 2-1

首先我们有广义积分的绝对收敛和收敛是等价的,故我们只需研究下列积分的收敛性即可:

\[\iint_{x^2+y^2\geq1}\frac{\left|\cos(x^2)\right|}{x^2+y^2}dxdy\]

由于

\[\frac{\left|\cos(x^2)\right|}{x^2+y^2}\geq\frac{1}{2(x^2+y^2)}+\frac{\cos(2x^2)}{2(x^2+y^2)}\]

\[\iint_{x^2+y^2\geq1}\frac{\left|\cos(x^2)\right|}{x^2+y^2}dxdy\geq\iint_{x^2+y^2\geq1}\frac{1}{2(x^2+y^2)}dxdy+\iint_{x^2+y^2\geq1}\frac{\cos(2x^2)}{2(x^2+y^2)}dxdy\]

反证:我们假设原积分收敛,则有:

\[\iint_{x^2+y^2\geq1}\frac{\left|\cos(x^2)\right|}{x^2+y^2}dxdy\text{与}\iint_{x^2+y^2\geq1}\frac{\cos(2x^2)}{2(x^2+y^2)}dxdy\text{均收敛}\]

进而有

\[\iint_{x^2+y^2\geq1}\frac{1}{2(x^2+y^2)}dxdy\text{收敛}\]

\[\iint_{x^2+y^2\geq1}\frac{1}{2(x^2+y^2)}dxdy=\int_{0}^{2\pi}d\theta\int_{1}^{+\infty}\frac{r}{2r^2}dr=\pi\int_{1}^{+\infty}\frac{1}{r}dr\text{发散}\]

故矛盾,即$\displaystyle\iint_{x^2+y^2\geq1}\frac{\cos(x^2)}{x^2+y^2}dxdy$发散.

Solution 2-2
\[\iint_{x^2+y^2\geq1}\frac{\left|\cos(x^2)\right|}{x^2+y^2}dxdy=\lim_{A\rightarrow+\infty}\int_{0}^{2\pi}d\theta\int_{1}^{A}\frac{\left|\cos(r^2\cos^2\theta)\right|}{r^2}rdr\quad(\clubsuit)\]

令 \(r=\displaystyle\frac{\sqrt{t}}{\left|\cos\theta\right|}\) 则\(\displaystyle dr=\frac{1}{2\sqrt{t}}\frac{1}{\left|\cos\theta\right|}\),代入$(\clubsuit)$式,我们有:

\[\begin{aligned}\lim_{A\rightarrow+\infty}\int_{0}^{2\pi}d\theta\int_{1}^{A}\frac{\left|\cos(r^2\cos^2\theta)\right|}{r^2}rdr&\geq\lim_{A\rightarrow+\infty}\int_{0}^{2\pi}d\theta\int_{1}^{\frac{1}{2}A^2}\frac{\left|\cos t\right|}{\frac{\sqrt{t}}{\left|\cos\theta\right|}}\frac{1}{2\sqrt{t}}\frac{1}{\left|\cos\theta\right|}\\ &\geq2\pi\int_{1}^{\frac{1}{2}A^2}\frac{\left|\cos t\right|}{t}dt\quad\text{发散}\end{aligned}\]

故$\displaystyle\iint_{x^2+y^2\geq1}\frac{\cos(x^2)}{x^2+y^2}dxdy$发散.

Exercise 3

研究下列积分的收敛性

\[\int_{0}^{+\infty}\frac{x^q}{1+x^p}\cos xdx\]
Solution 3

可能的奇点:$0,+\infty$

\[\int_{0}^{+\infty}\frac{x^q}{1+x^p}\cos xdx=\int_{0}^{1}\frac{x^q}{1+x^p}\cos xdx+\int_{1}^{+\infty}\frac{x^q}{1+x^p}\cos xdx\]

在$x=0$处,$\displaystyle\frac{x^q}{1+x^p}\cos x\sim x^q(x\rightarrow0^{+})\Rightarrow q\gt-1$收敛.

在$x\rightarrow+\infty$处,

\[\int_{1}^{+\infty}\frac{x^q}{1+x^p}\cos xdx=\int_{1}^{+\infty}\frac{x^p}{1+x^p}x^{q-p}\cos xdx\]

显然由$Cauchy$判别法易知$q-p\geq0$发散.

当$q-p\lt-1$时,

\[\int_{1}^{+\infty}\left|\frac{x^p}{1+x^p}x^{q-p}\cos x\right|dx\leq\int_{1}^{+\infty}x^{q-p}dx\quad\text{收敛}\]

即此时有$\displaystyle\int_{1}^{+\infty}\frac{x^q}{1+x^p}\cos xdx$绝对收敛.

当$-1\leq q-p\lt0$时,

\[\left|\frac{x^p}{1+x^p}x^{q-p}\cos x\right|\geq\frac{1}{2}x^{q-p}\cos^2x=\frac{1}{4}x^{q-p}(1+\cos 2x)=\frac{1}{4}x^{q-p}+\frac{1}{4}x^{q-p}\cos 2x\]

而$\displaystyle\int_{1}^{+\infty}\frac{1}{4}x^{q-p}dx$发散,$\displaystyle\int_{1}^{+\infty}\frac{1}{4}x^{q-p}\cos 2xdx$由Dilichlet判别法易知收敛,故

\[\int_{1}^{+\infty}\left|\frac{x^p}{1+x^p}x^{q-p}\cos x\right|dx\geq\int_{1}^{+\infty}\frac{1}{4}x^{q-p}dx+\int_{1}^{+\infty}\frac{1}{4}x^{q-p}\cos 2xdx\quad\text{发散}\]

故此时有$\displaystyle\int_{1}^{+\infty}\frac{x^q}{1+x^p}\cos xdx$条件收敛.

综上:

\[\left\{\begin{aligned} q-p\lt-1\text{且}q\gt-1&\quad\text{绝对收敛}\\ -1\leq q-p\lt0\text{且}q\gt-1 &\quad\text{条件收敛}\\ q-p\geq0\text{或}q\leq-1 &\quad\text{发散} \end{aligned}\right.\]

Exercise 4

设$p\geq0$,数列$a_n$满足$a_1=1,a_{n+1}=n^{-p}\arctan a_n$,判断并证明级数

\[\sum_{n=1}^{\infty}a_n\]

的收敛性

Solution 4

①$p\gt0$时,

\[\arctan x\sim x(x\rightarrow0)\quad\frac{a_{n+1}}{a_n}\sim n^{-p}\rightarrow0(n\rightarrow\infty)\]

由达朗贝尔判别法知收敛.

②$p=0$时,

\[a_{n+1}=\arctan a_n\quad\arctan x\sim x-\frac{1}{3}x^3+o(x^3)\] \[\lim_{n\rightarrow\infty}\frac{a_n^r}{n}=\lim_{n\rightarrow\infty}\frac{a_{n+1}^r-a_n^r}{n+1-n}=\lim_{n\rightarrow\infty}\frac{r\theta_n^{r-1}(a_{n+1}-a_n)}{1}=\lim_{n\rightarrow\infty}ra_n^{r-1}(-\frac{1}{3}a_n^3)=-\frac{r}{3}\lim_{n\rightarrow\infty}a_n^{r+2}\]

取$r=-2$有$\lim_{n\rightarrow\infty}\frac{a_n^{-2}}{n}=\frac{2}{3}\Rightarrow a_n\sim\sqrt{\frac{2}{3n}}\Rightarrow\sum_{n=1}^{+\infty}a_n$发散.

Exercise 5

判断下列积分的收敛性

\[\int_{0}^{+\infty}(-1)^{\left[x^3\right]}dx\]
Solution 5

显然这是一个非绝对收敛的积分.

\[\int_{0}^{+\infty}(-1)^{\left[x^3\right]}dx=\sum_{n=0}^{+\infty}\int_{\sqrt[3]{n}}^{\sqrt[3]{n+1}}(-1)^ndx=\sum_{n=0}^{+\infty}\left((n+1)^{\frac{1}{3}}-n^{\frac{1}{3}}\right)(-1)^n=\sum_{n=0}^{+\infty}\frac{1}{3\sqrt[3]{\theta_n^2}}\]

其中$n\leq\theta_n\leq n+1$,故由$Libiniz$判别法知收敛,即$\displaystyle\int_{0}^{+\infty}(-1)^{\left[x^3\right]}dx$条件收敛.

Exercise 6

设$G$为$\mathbb{R}^2$上的有界闭区域,$\partial G$由有线条分段光滑的简单闭曲线构成,假设$u\in C^2(G)$,且$u$在边界上恒为$0$,证明对$\forall\lambda\gt0$,

\[\lambda\int_{G}u^2dxdy+\frac{1}{\lambda}\int_{G}\left(\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}\right)dxdy\geq2\int_{G}\left(\frac{\partial u}{\partial x}\right)^2+\left(\frac{\partial u}{\partial y}\right)^2dxdy\]
Solution 6

由于$u$在$\partial G$上恒为$0$,故由Green公式

\[0=\int_{\partial G}u(u_xdy-u_ydx)=\iint_{G}(u_x^2+u_y^2+u\cdot u_{xx}+u\cdot u_{yy})dxdy\] \[\Rightarrow\iint_{G}(u_x^2+u_y^2)dxdy=\iint_{G}-u(u_{xx}+u_{yy})dxdy\]

Cauchy-Schwart积分不等式有:

\[\begin{aligned} &\lambda\int_{G}u^2dxdy+\frac{1}{\lambda}\int_{G}\left(\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}\right)dxdy\geq2\iint_{G}\left|u(u_{xx}+u_{yy})\right|dxdy\\ \geq&2\iint_{G}-u(u_{xx}+u_{yy})dxdy=2\iint_{G}(u_x^2+u_y^2)dxdy=2\int_{G}\left(\frac{\partial u}{\partial x}\right)^2+\left(\frac{\partial u}{\partial y}\right)^2dxdy \end{aligned}\]

故综上:

\[\lambda\int_{G}u^2dxdy+\frac{1}{\lambda}\int_{G}\left(\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}\right)dxdy\geq2\int_{G}\left(\frac{\partial u}{\partial x}\right)^2+\left(\frac{\partial u}{\partial y}\right)^2dxdy\]

Solution for PDF

Click Here and get the solution of this exam.

Remark

If you have any questions or need further assistance, feel free to ask! Here is my email: nkusherr1 at gmail.com